

Центр аддитивных технологий 3DVision https://3dvision.su info@3dvision.su

194100, г. Санкт-Петербург, ул. Кантемировская д. 39, лит. А, пом. 37-H, офис 225 Тел./факс: (812) 385-7292

(495)662-9858 (800)333-0758

ТЕХНИЧЕСКАЯ СПЕЦИФИКАЦИЯ

КРАТКОЕ ОПИСАНИЕ МАТЕРИАЛА

SH8900-H - АБС-подобная смола, обладающая высокой точностью и хорошими прочностными характеристиками. SH8900-H может применяться в мастер-моделях, концепт-моделях, инженерных деталях и функциональных прототипах в области автомобильной, медицинской и бытовой электроники.

ОБЩИЕ ХАРАКТЕРИСТИКИ

- Смола обладает средней вязкостью, за счет этого обеспечивается качественное повторное нанесение в процессе печати и быстрая очистка поверхности после изготовления объекта.
- Сохранение повышенной прочности при работе готовых деталей с жидкостями
- Минимальная постобработка готовых изделий
- Длительный срок хранения в оборудовании

ПРЕИМУЩЕСТВА МАТЕРИАЛА:

- Быстрый процесс отверждения
- Построение точных и высокопрочных деталей с улучшенной стабильностью размеров
- Отлично подходит в качестве мастер-моделей для вакуумного литья
- Малая усадка и хорошая устойчивость к УФ
- Чистый белый цвет готовых изделий
- Легко обрабатывается механически
- Стойкость к воздействию внешних температур

Физические свойства (жидкий материал)

Цвет	Белый
Плотность	1.11-~1.15г/см³ @ 25 °С
Вязкость	405~500 cΠ @ 25 °C
Глубина проникновения	0.135~0.152 мм
Критическое воздействие	8.9~9.5 мДж/см ²
Толщина слоя	0.05~0.12 мм

Механические свойства материала после отверждения

Измерение	Метод тестирования	Значение
90-минутна:	я УФ-засветка после от	тверждения
Твердость , Шор D	ASTM D 2240	77~88
Модуль упругости при изгибе, МПа	ASTM D 790	2,682-2,778
Прочность на изгиб, МПа	ASTM D 790	70- 74
Модуль упругости при растяжении, МПа	ASTM D 638	2,599-2,715
Прочность на разрыв, МПа	ASTM D 638	40-58
Удлинение при разрыве	ASTM D 638	12 -19%
Коэффициент Пуассона	ASTM D 638	0.4-0.44
Ударная прочность по Изоду с надрезом, Дж/м	ASTM D 256	35 - 45
Температура теплового отклонения, °С	ASTM D 648 @66PSI	55~68
Температура стеклования, ℃	DMA, E" peak	60~75
Коэффициент теплового расширения, °С	TMA(T <tg)< td=""><td>90~102*E-6</td></tg)<>	90~102*E-6
Плотность, г/см3		1.12~1.18
Диэлектрическая постоянная 60 Hz	ASTM D 150-98	4.1~5.0
Диэлектрическая постоянная 1 kHz	ASTM D 150-98	3.2~4.2
Диэлектрическая постоянная 1 MHz	ASTM D 150-98	3.2~4.1
Диэлектрическая прочность kV/mm	ASTM D 1549-97a	12.7~16.2